
RESEARCH PAPER

Selecting predictors for discriminant analysis of species
performance: an example from an amphibious softwater plant
F. Vanderhaeghe1,2, A. J. P. Smolders3,4, J. G. M. Roelofs3,4 & M. Hoffmann1,2

1 Department of Biology, Terrestrial Ecology Unit, Ghent University, Ghent, Belgium

2 Research Institute for Nature and Forest, Brussels, Belgium

3 Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen,

The Netherlands

4 B-WARE Research Centre, Radboud University Nijmegen, Nijmegen, The Netherlands

INTRODUCTION

Modelling the response of plant species to environmental fac-
tors is important in the methodology of many ecological
studies. Several recommendations now exist regarding the
choice of predictors. In their reviews on species distribution
models, Elith & Leathwick (2009) and Austin (2007) point
out that best results are obtained when proximal (causal)
predictors are selected first, based on existing knowledge.
Austin (2007) explicitly refers to a ‘move away from using all
possible predictors and use existing knowledge to best advan-
tage’. This view is now largely accepted. Ecologists have been
making more use of model selection criteria in order to
model the response of a species to its multivariate environ-
ment (Johnson & Omland 2004; Rushton et al. 2004). In this
approach, only those variables are sampled that are prede-
fined in the models to be evaluated. If the models contain
variables that represent the most important causal factors for
a species’ response, these models have a larger predictive or
explanatory value (MacNally 2000; Ginzburg & Jensen 2004).

However, the model selection method has its limitations
(Ginzburg & Jensen 2004; Rushton et al. 2004). It is often

not possible to know which predictor variables will be most
decisive for the response variable; for example, lack of suffi-
cient knowledge of the species’ ecology or the ecosystem (e.g.
Van Sickle et al. 2006). Next, it can be challenging to find
new, important variables beside the ‘generally accepted’ ones,
like pH, nitrogen and phosphorus concentrations in the case
of plant species, given a dataset with detailed environmental
information (many variables). This is especially the case for
(semi-)aquatic plant species, where literature on the species’
environmental niche is often scattered and incomplete. For
this reason, Vanderhaeghe et al. (2005) sampled many vari-
ables during a field survey in order to elucidate the most
important predictor variables for Eleocharis multicaulis
(Smith) Desv., an amphibious plant of west European soft-
water lakes. In such cases, we must turn to preliminary vari-
able selection from a larger dataset of many potentially
relevant variables before model fitting (James & McCullogh
1990; Neter et al. 1996; Quinn & Keough 2002). If in this
way we obtain a parsimonious model with a good fit to the
data, chances are high that causal factors were selected (Mac-
Nally 2000; Austin 2002). Therefore, ecologists have designed
ways to reduce multivariate information (Austin 1985; James
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ABSTRACT

Selecting an appropriate variable subset in linear multivariate methods is an impor-
tant methodological issue for ecologists. Interest often exists in obtaining general
predictive capacity or in finding causal inferences from predictor variables. Because
of a lack of solid knowledge on a studied phenomenon, scientists explore predictor
variables in order to find the most meaningful (i.e. discriminating) ones. As an
example, we modelled the response of the amphibious softwater plant Eleocharis
multicaulis using canonical discriminant function analysis. We asked how variables
can be selected through comparison of several methods: univariate Pearson chi-
square screening, principal components analysis (PCA) and step-wise analysis, as
well as combinations of some methods. We expected PCA to perform best. The
selected methods were evaluated through fit and stability of the resulting discrimi-
nant functions and through correlations between these functions and the predictor
variables. The chi-square subset, at P < 0.05, followed by a step-wise sub-selection,
gave the best results. In contrast to expectations, PCA performed poorly, as so did
step-wise analysis. The different chi-square subset methods all yielded ecologically
meaningful variables, while probable noise variables were also selected by PCA and
step-wise analysis. We advise against the simple use of PCA or step-wise discrimi-
nant analysis to obtain an ecologically meaningful variable subset; the former
because it does not take into account the response variable, the latter because noise
variables are likely to be selected. We suggest that univariate screening techniques
are a worthwhile alternative for variable selection in ecology.
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& McCullogh 1990; Manly 1994), among which canonical
ordinations (ter Braak 1995) are very popular. Through
inspection of the coefficients of a canonical function, many
authors have interpreted the meaning of the original variables
in relation to the observed phenomenon. However, parsi-
mony of these models has often been ignored.

In our analysis of the realised niche of E. multicaulis
(Vanderhaeghe et al. 2005), we applied canonical discriminant
function analysis (discriminant analysis, DA) in order to find
the main predictors that distinguish between three perfor-
mance categories of the species (absent, low and high cover). A
major advantage of DA is that no distributional assumptions
are made for the predictor variables. In this paper we explain
the backgrounds of the applied variable selection. We specifi-
cally ask how variables can be selected for DA, and we there-
fore compared several variable selection methods. While only
the best performing variable selection technique was applied
and ecologically interpreted in Vanderhaeghe et al. (2005), the
preceding comparison of variable selection methods is the sub-
ject of the current paper. Hence, no new ecological informa-
tion is provided here. The results of the comparison of variable
selection methods can be useful in future explorations of large
multivariate datasets in which selecting the right predictors is
not self-evident. An important issue in variable selection is to
disentangle the web of multicollinearity among the variables in
order to select those that have most potential to be causal
(MacNally 2000; Graham 2003; Zuur et al. 2010). Williams &
Titus (1988) recommend a 1:3 ratio of variables to observa-
tions as a maximum (after selection), in order to obtain nar-
row confidence intervals of the canonical coefficients and thus
achieve a reliable interpretation.

Several methods of variable selection have been put for-
ward. One approach is to conduct a principal components
analysis (PCA) and select original variables by means of the
factor loadings (Jolliffe 1972a,b; Krzanowski 1987; King &
Jackson 1999). This results in an effective reduction of multi-
collinearity among the final predictor variables. In some stud-
ies the principal components, which are linear combinations
of the original variables, are used as actual predictor variables
for the response model (Manel et al. 2001; Graham 2003).
Step-wise canonical ordinations (in contrast to direct analy-
sis) are an alternative approach. They combine a forward
selection procedure and a backward elimination procedure at
each intermediate step of model fitting; mostly using P-values
as criteria for entering and removing variables. This approach
has been criticised because the selected subset is considered
highly variable, thus dependent on the specific sample (e.g.
Flack & Chang 1987; James & McCullogh 1990; Guisan &
Zimmerman 2000; MacNally 2000; Guisan et al. 2002; Quinn
& Keough 2002). Univariate screening of predictor variables,
e.g. through their partial correlation with the response vari-
able, constitutes another algorithm to obtain a subset of vari-
ables, although it has been criticised, exactly because of its
univariate nature as well as for its compromised type-I error
rates (MacNally 2000). Finally, hierarchical partitioning
(Chevan & Sutherland 1991; MacNally 2000) quantifies the
independent effect of each predictor on the response, so that
they can be ranked.

In our application of DA, we compared three procedures
to reduce the set of variables to enter: step-wise DA, PCA
and univariate screening with Pearson chi-square calculation.

In step-wise DA, the variable subset is formed during the
actual DA procedure, while in the other two methods this is
accomplished beforehand. The Pearson chi-square procedure
consists of univariate screening of all predictors in relation to
the response variable (Garson & Moser 1995). It makes no
distributional assumptions regarding the predictor variables.
Eventually, we performed several combinations of these three
methods. The aim of the present study was to evaluate these
selection procedures. From other authors’ findings (see
above), we expected the worst result with the step-wise
method, while PCA would work best because of its ability to
reduce multicollinearity.

METHODS

The dataset

The same dataset was used as in Vanderhaeghe et al. (2005),
and stems from a field survey in summer 2001 and winter
2002. Data were collected from plots of 2 m2 on the shores
of 26 shallow softwater lakes in sandy areas of Belgium and
the Netherlands. One to three plots were sampled per lake.
The statistical sample consists of 46 units (plots), 232 predic-
tor variables and one response variable, the cover of E. multi-
caulis, which is an uncommon species in the investigated
region. We selected this species because it is typical of the
Eleocharition multicaulis (Vanden Berghen 1969) alliance, and
because this plant community had not previously been sub-
ject to more elaborate research. Both simple and derived vari-
ables comprise the predictor dataset (derived variables are
typically ratios or summer–winter differences of simple vari-
ables). Although the sampling design implies a limited inter-
dependence among plots, we assume that this effect can be
ignored as many lakes were sampled and plots within one
lake were chosen to be dissimilar and distant. For a summary
of the predictor variables, see Appendix S1. The response var-
iable was split into three classes in order to reflect the major
variation of the species’ response and in order to obtain
enough sample units per response class. The following classes
were chosen: absent (cover = 0%; 16 cases), low cover (cover
10% or less; 22 cases) and high cover (cover > 10%; eight
cases). To improve the performance of PCA, six possible
transformations were applied to different predictors in order
to normalise them (monotone functions). A total of 101
(44%) of the 232 predictors attained a normal distribution
(Kolmogorov-Smirnov test, P > 0.05).

Analyses were done with the statistical package SPSS 11.0
for Windows (SPSS Inc 2001).

Variable Selection

Principal components analysis
For each principal component, the variable with the highest
loading was retained (method ‘B4’ of King & Jackson
(1999)). The first p components with eigenvalues larger than
those generated by the broken-stick model (Frontier 1976)
were taken into account. However, when this led to p > 15,
only the first 15 principal components were taken, in agree-
ment with Krzanowski (1987). This was done to keep the
ratio of variables to observations below 1:3, in order to
achieve reliable canonical coefficients in DA.
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Step-wise discriminant analysis
Discriminant analysis will be explained below. In the step-
wise procedure, the probability of the F-value in anova was
used for inclusion and exclusion of variables, using P < 0.05
and P > 0.10 as criteria for entry and removal, respectively.

Pearson chi-square screening
For each variable, the sample was divided into three quan-
tiles of equal frequency. In this way the frequency distribu-
tion of the response variable could be compared between
the quantiles, by means of a 3 · 3 contingency table, one
table per predictor. We acknowledge that there is no control
for type-I error when performing so many successive tests.
In this case, the use of chosen P-levels is merely a criterion
to delimit a subset of variables and to measure their associ-
ation with the response variable; it is not intended for use
in statistical inference. This aspect typifies variable selection
methods in general (Quinn & Keough 2002). We therefore
prefer the term ‘screening’ instead of ‘testing’. Two P-levels
were used for variable selection, 0.01 and 0.05. We did not
accept significant results when more than 50% of the con-
tingency table cells contained expected frequencies of < 5.
The P < 0.01 criterion yielded ten variables (4.3%), the
P < 0.05 yielded 31 (13.4%). Only the P < 0.01 subset was
used for direct DA, as the other subset contained more than
15 variables.

Combinations
Three combinations of the previously described methods
were made, starting from the variable subsets obtained
from the Pearson chi-square screening. These were step-
wise DA, applied to both subsets (with P < 0.01 and
P < 0.05, respectively), and PCA applied to the largest sub-
set (with P < 0.05). We thus compared six selection meth-
ods, through the results of DA. The three variable subsets
in which step-wise analysis was not involved, were used for
direct DA. Because of the high number of variables, we
did not perform hierarchical partitioning (Chevan & Suth-
erland 1991; MacNally 2000); this technique may however
be effective in datasets with a shorter list of potential
predictors.

Evaluation with Discriminant Analysis

In direct DA, all variables entered appear with a coefficient in
the discriminant functions (DFs), which are the canonical
functions in this type of ordination. In the case of three
groups, two orthogonal DFs are constructed, leading to a
total of 12 calculated DFs for all scenarios together. The dis-
criminant coefficients are chosen to maximise the F-ratio of a
one-way anova, in which the three cover classes play the role
of the grouping factor and the DF is the dependent variable.
Homogeneity of variances among groups was subjectively
evaluated on the basis of the ordination diagram, as proposed
in Quinn & Keough (2002). To interpret the relative contri-
bution of each original variable, standardised discriminant
coefficients were used because these correspond to scaled
variables with unit variance. The match between the six
selected subsets was evaluated with Jaccard’s similarity coeffi-
cient (Krebs 1999).

We considered three criteria as important for ecologists
when using DA. First, the resulting DFs must clearly sepa-
rate the response groups (model fit). This was verified by
their classification success (percentage of correctly classified
sample units on the basis of DF scores) and by means of
the F-ratios. Second, the DFs must be stable to small
changes in the sample, in order to have a general value.
This was verified in two ways. We applied jack-knife classi-
fication, in which each sample unit in turn is assigned to
one of the categories, based on the DFs calculated from all
remaining sample units (Manel et al. 2001). When a large
drop was observed in the classification success between stan-
dard classification and jack-knife classification, the DA is
considered unreliable. Beside the jack-knife classification cri-
terion, results were considered suspicious if the variable
subset contained more than 15 variables, the maximum
allowed for stable coefficients in our case (Williams & Titus
1988). Third, we considered the result acceptable only if at
least one original variable was present in the DF of those
that most strongly correlate with the DF. For this purpose,
Spearman rank correlations between the 232 predictor vari-
ables and the 12 DFs were calculated, and for each DF the
predictor variables with significant correlation (P < 0.05)
were assigned a rank number according to correlation
strength. We did not perform any type I error correction
when calculating these correlations, because it was our aim
to select and rank the predictors, not to make a multiple
statistical inference regarding the correlations. Remember
that each DF contains p predictor variables; the p predictors
with lowest correlation rank (most strongly correlating) of
all 232 predictors were considered and it was determined
which of them are present in the DF. Furthermore, consid-
ering the p predictor variables of a DF, we wanted a close
relationship between standardised coefficients and Spearman
rank correlations; this was verified by the Pearson correla-
tion coefficient between these two measures.

RESULTS

Overall similarity between the variable subsets is low, largely
due to the differing number of variables selected (Table 1; see
Appendix S2 for Jaccard similarities). The step-wise DA subset
has too many variables to yield reliable coefficients, but we will
examine the result for other properties. Most subsets originat-
ing from the chi-square selections are relatively similar.

The ability of the subsets to distinguish the cover classes
can be derived from Table 1. A clear separation of classes
(high F-ratio) with a perfect classification is reached with the
step-wise analysis (Fig. 1A). The only other analyses that
yielded good separation are the step-wise DA of the P < 0.05
chi-square subset (Fig. 1B) and the simple PCA selection
(diagram similar to Fig. 1B).

The stability of the DFs is derived from the drop in classi-
fication success when jack-knife classification is done
(Table 1). At first sight, the step-wise analysis seems the best
solution (no drop); however, this result is achieved through
incorporation of 24 variables in the DFs, making the coeffi-
cients unreliable. So, the most stable solutions in our case are
those with a small drop in classification success: the step-wise
DAs of the chi-square subset, P < 0.01, retaining two vari-
ables (drop: 7%), and P < 0.05, retaining five (drop: 8%).
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The DFs from the chi-square derived analyses retain var-
iable proportions of the predictors that correlate well with
the DF (0–100%, see Appendix S3), with the lowest pro-

portions occurring in the PCA-selected subset and the step-
wise DA. All six analyses retain at least one of the best
correlating predictors. However, the standardised DF coeffi-
cient is not always reflected by the Spearman correlation
with the DF (Fig. 2). A significant relationship between the
two parameters is present for the step-wise DA, the analy-
sis of the PCA-selected subset and the step-wise DA of the
P < 0.05 chi-square subset. The last analysis is marked by
very high Pearson correlation coefficients between the two
measures (Table 2). However, for the PCA-selected subset
and the step-wise DA, the actual Spearman rank correlation
coefficients of the variables retained in the DFs are gener-
ally low compared to the other variable subsets (Fig. 2; see
also Appendix S3). The smaller variable subsets of the four
Pearson chi-square screening approaches are shown in
Table 3.

DISCUSSION

In our study, the step-wise DA of the P < 0.05 chi-square
subset combines all desirable properties: it is able to effec-
tively discriminate between the cover classes, the analysis
meets the variables to observations ratio condition that
should lead to stable DF coefficient estimation, and the inter-
pretation of the coefficients is supported by the pattern of
Spearman rank correlations. At least one of these criteria is
not accomplished in any of the other methods. In particular,
our study suggests failure of the popular step-wise procedure
and, in contrast with our expectations, also the PCA selection
procedure. Moreover, the causal relations of the chi-square
selected predictor variables with the performance of the plant
species can be ecologically explained (see Vanderhaeghe et al.
2005), whereas several variables retained in the step-wise and
PCA procedure would be difficult to explain in a plant eco-
logical context [e.g. lake surface or water colour (absorption
at 450 nm)]. Thus, the models we compared statistically also
differ in ecological meaningfulness. Austin (2007) encourages
the use of this criterion when evaluating models.

Table 1. F-ratios for the discriminant functions and classification success of each discriminant analysis. A clear separation is established for the lower three

scenarios.

type of analysis

number of

retained variables

discriminant

function F2,43 P

standard

classification success (%)

Jack-knife

classification success (%)

percentage

dropa

chi (0.01) direct 10 DF1 18.7 <0.001 61 41 32

DF2 0.9 0.426

chi (0.01) steps 2 DF1 12.0 <0.001 61 57 7

DF2 0.2 0.824

chi (0.05) PCA direct 4 DF1 3.1 0.057 46 39 14

DF2 0.7 0.512

chi (0.05) steps 5 DF1 22.9 <0.001 78 72 8

DF2 10.2 <0.001

PCA direct 15 DF1 29.8 <0.001 65 39 40

DF2 8.1 0.001

steps 24 DF1 975.0 <0.001 100 100 0

DF2 427.2 <0.001

DF1 = first discriminant function; DF2 = second discriminant function; chi (0.01) direct = direct discriminant analysis with the chi-square subset P < 0.01;

chi (0.01) steps = step-wise discriminant analysis with the chi-square subset P < 0.01; chi (0.05) PCA direct = direct discriminant analysis with the PCA-

selected variables from the chi-square subset P < 0.05; chi (0.05) steps = step-wise discriminant analysis with the chi-square subset P < 0.05; PCA

direct = direct discriminant analysis with PCA-selected subset; steps = step-wise discriminant analysis.
aPercentage is calculated relative to standard classification success.

A

B

Fig. 1. Examples of ordination diagrams for two discriminant analyses.

A. Step-wise discriminant analysis, starting from all 232 predictors; the

cover classes are strongly separated. B. Step-wise discriminant analysis

using the P < 0.05 chi-square subset; the cover classes are rather well

separated.
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James & McCullogh (1990) and Quinn & Keough (2002)
summarise the criticisms against the use of step-wise proce-
dures in linear methods. Step-wise procedures attempt to
maximise the percentage of variation accounted for by the

linear function. However, meaningless variables are likely to
be selected to serve this purpose, as shown in a simulation
study by Flack & Chang (1987). Our results support these
findings. Although the step-wise selection method gave
promising results, the rather poor relationship with the
Spearman correlations, the low involvement of predictors
that correlate well with the DFs and the high number of
selected variables make this model unlikely to be generally
applicable. Similarly, Van Sickle et al. (2006) compared step-
wise DA with best subsets DA, the latter being an approach
not considered by us. These authors came to similar conclu-
sions regarding step-wise DA and they equally discourage its
use.

Multicollinearity is a problem of all methods in which lin-
ear combinations of predictor variables are involved (Graham
2003). Especially when scientists are interested in the causal
(explanatory) value of a model, rather than in its predictions,
multicollinearity brings the risk of retaining non-causal pre-
dictor variables that are correlated with a causal, but dis-
carded, variable. Multicollinearity is the main reason that
several authors recommend interpretation by means of corre-
lations with the canonical function (linear function) instead
of the actual canonical coefficients (e.g. Manly 1994; Quinn
& Keough 2002). However, in observational studies an
orthogonal design is rarely present, in which one predictor
varies while the others remain constant (Johnson & Omland
2004). Hence, the additive effect of each predictor variable
can only be interpreted from the canonical coefficients, as
suggested by Rencher (1988, 1992), Williams & Titus (1988),
Tardif & Hardy (1995) and MacNally (2000). We have there-
fore used the presence of the best correlating predictors in
the canonical function and a good relationship between cor-
relations and coefficients as model eligibility criteria.

Retaining the variables with the highest loading in PCA
reduces the multicollinearity problem, because this selection
method effectively excludes redundant variables. King & Jack-
son (1999) selected variables from a climate dataset using
PCA, in order to conduct a canonical correlation analysis
between the climate data and data on lake thermal stratifica-
tion. However, selection by means of PCA does not take into
account the direct relevance of the predictor variables to the
response variable(s), implying a potential for withholding less
meaningful, but less redundant, predictor variables (Graham
2003). A similar reasoning was made by ter Braak (1995, p.
136), in the context of correspondence analysis. The low
jack-knife classification success in our case indicates that
PCA did not mark the necessary variables for prediction of
the performance of E. multicaulis. The algorithm of PCA sub-
set selection contrasts with that of the chi-square screening
approaches, in which the direct relation of each predictor
with the response variable is the first criterion to retain or
reject a predictor variable.

Univariate chi-square screening before embarking on any
multivariate analysis turned out to be a very satisfactory
method. Conducting a step-wise procedure with these vari-
ables (subset P < 0.05) does not run the risk of obtaining an
ecologically less meaningful variable subset. On the contrary,
it indicates their predictive ability through further selection
and assigning coefficients. It is probable that the rather low
falls in classification success, when jack-knife classification is
performed (Table 1), are due to the selection of the ecologi-

Fig. 2. Graphic relationship between standardised discriminant function

coefficients and the corresponding Spearman rank correlation between

the retained predictors and the discriminant function. Standardised discri-

minant function coefficients are not strictly associated with the Spearman

rank correlation between the retained predictors and the discriminant

function. Only for the lowest three analyses (six graphs) was there a signif-

icant correlation between the two measures (P < 0.05). Abbreviations as

in Table 1.

Table 2. Pearson correlation coefficients for each discriminant function,

between the standardised function coefficients and the Spearman rank

correlation coefficient of the corresponding predictors with the discrimi-

nant function.a Only the bold results are significant (P < 0.05).

type of analysis

pearson correlation

DF1 DF2

chi (0.01) direct 0.40 0.57

chi (0.01) steps 1.00 1.00

chi (0.05) PCA direct 0.90 0.91

chi (0.05) steps 0.99 0.92

PCA direct 0.76 0.72

steps 0.57 0.73

aAbbreviations as in Table 1.
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cally most meaningful variables beforehand. In general, how-
ever, by excluding variables that are not significant in univar-
iate analysis, there is a risk of losing actually causal variables
when their effects cancel each other out in the specific dataset
(MacNally 2000). Although this is theoretically possible, we
expect that the ecologically most significant predictors will, in
most cases, be significant on the univariate level when the
sample is not too small.

In conclusion, we agree with other authors that purely
step-wise methods are not recommended for achieving a
good explanatory ecological model when starting from many
predictor variables. From our results, ecologists should be
prudent when using PCA subset selection. PCA can be used
if the only purpose is to obtain a limited dataset that still
contains much of the variation of the original data. PCA,
however, will not necessarily withhold the important variables
for the interpretation of an extra phenomenon. In general,
we suggest evaluating any selected variable subset by means
of the efficacy and credibility of the obtained results from the
analysis of real interest (discriminant analysis in our case),
using objective statistical criteria as well as the ecological
interpretability and credibility of the models, thereby sup-
porting the view of Austin (2007). The univariate evaluation
of variables in relation to the response variable is a method
with potential, e.g. chi-square screening in the case of a cate-
gorical response variable. Subsequent selection with one of
the previous methods (PCA or step-wise) can prove useful.
Other methods that we did not consider, e.g. best-subsets
comparison and hierarchical partitioning, may also be useful.

There is clearly a need for simulation studies on these sub-
jects, so that more generally applicable conclusions can be
drawn than presently possible from the ecological literature.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article:

Appendix S1. The number of different types of predictor
measured.

Appendix S2. Overall characteristics of the six variable
subsets.

Appendix S3. Match between the variable subsets and the
variables that best correlate with the discriminant functions.

Appendix S4. Retained variables in all approaches.
Please note: Wiley-Blackwell are not responsible for the con-

tent or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should
be directed to the corresponding author for the article.

Table 3. Retained variables of the Pearson chi-square screening approaches, marked with their maximum absolute Spearman rank correlation (with either

DF1 or DF2) when they belonged to the most strongly correlated predictors, and otherwise with ‘X’. The PCA-selected subset and the step-wise DA subset

are not shown in full (see Appendix S4); they mainly do not coincide with the chi-square subsets shown here, and contain few highly correlated predictors,

of which most belong to chi-square subsets.a

covariateb chi (0.01)

direct

chi (0.01)

steps

chi (0.05)

PCA direct

chi (0.05)

steps

PCA

direct steps

number of retained variables 10 2 4 5 15 24

seasonality of mineral soil layer Si concentration nacl extraction 0.67

mineral soil layer winter Si concentration nacl extraction 0.65

seasonality of mineral soil layer total N content 0.52 0.66 X

mineral soil layer winter total N content 0.55

seasonality of mineral soil layer K concentration 0.58

seasonality of surface water ammonium ⁄ nitrate concentration 0.64 0.79 0.60 0.45

mineral soil layer winter Si concentration 0.64

cover Juncus bulbosus X

surface water summer ion ratio (IR) X

surface water winter Cl proportion X

surface water winter K concentration 0.52 0.45

seasonality of surface water divalent ⁄ monovalent cation ratio 0.57 0.65 0.34

cover Mentha aquatica X 0.44

cover Agrostis canina X

mineral soil layer summer Mg concentration X

surface water summer Mg concentration 0.81

surface water winter pH 0.82

aAbbreviations as in Table 1.
bSeasonality variables are the difference between summer and winter values. Other variables are always confined to winter or summer conditions, with

cover values for the summer period. See Vanderhaeghe et al. (2005) for technical aspects and ecological interpretation of results.
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