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Abstract

Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems.
Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present,
north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We
hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored
lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish
(Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish
are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake
enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce
internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in
a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different
mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew
rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were
suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had
no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We
show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte
growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow
water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of
invasive crayfish populations is very difficult.
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Introduction

Submerged macrophytes play a key role in shallow
freshwater ecosystems by increasing nutrient retention,
stabilizing sediment and providing food and habitat for macro-
invertebrates, fish and birds [1]. A high abundance of
submerged macrophytes is therefore considered to be an
important variable in maintaining the clear water state in
shallow lakes [2]. However, increased nutrient loading of
shallow water systems during the last decades resulted in
turbid waters and a strong decline of macrophyte abundance
[3,4]. To restore water transparency and macrophyte
vegetation, external nutrient loading has been reduced and
additional measures like the removal of benthivorous fish have

been taken [5-8]. These measures have only been temporarily
successful [7]. Especially in lakes that are rich in organic
sediments, internal phosphorus (P) loading still leads to high
nutrient levels [9,10]. To minimize P release from lake
sediments into the water column, several chemical
phosphorus-binding agents have been applied, like calcium,
aluminium and iron [11-13], leading to reduced internal P
loading and increased water transparency in several studies
[11,14]. However, increased water transparency does not
always result in the return of submerged macrophytes [6,15].
This can be due to other unsuitable abiotic conditions for
macrophyte development or to limiting biotic factors such as
grazing by herbivores [16]. Waterfowl and fish can strongly
reduce biomass of planted macrophytes in restored lakes
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[17-21] as well as spontaneous development of macrophyte
communities [22,23], even though the latter is not found in all
restoration projects [24-26]. However, large fish and waterfowl
are no longer the only potential grazers as European shallow
lakes are increasingly colonised by invasive crayfish such as
the red swamp crayfish (Procambarus clarkii) [27-29]. In The
Netherlands currently six species of exotic crayfish have
established, whereas the native crayfish Astacus astacus is
almost extinct due to the crayfish plague [30]. Crayfish may
reduce the standing stock of macrophytes by direct
consumption [31,32], increase water turbidity through sediment
resuspension [33] and destroy macrophyte biomass by non-
consumptive plant shredding [34], leading to a severe reduction
of macrophyte abundance in lakes where they have been
introduced [31,35-37]. Additionally, invasive crayfish may
prevent the recruitment of macrophytes as shown in rice fields
and mesocosm studies [38]. Therefore, invasive crayfish may
potentially inhibit or prevent the return of macrophytes when
abiotic conditions for macrophyte growth have been restored,
but their impact in lake restoration projects remains untested.
In The Netherlands, P. clarkii was first observed in 1985 [30]
and has rapidly spread throughout the peat district in the west
of the country in the last decade(Figure 1). Many restoration
projects have been executed to restore the water transparency
and promote the return of macrophytes in the shallow water
bodies of this peat district [4,39,40].

We hypothesize that invasive crayfish pose a novel
constraint on the regeneration of submerged macrophytes in
lake restoration projects and may jeopardize restoration efforts.

The innovation of our study is that (1) we study the impact of
crayfish in the field in an additive design, using different mesh
size exclosures to study the role of crayfish versus other
potential herbivores, and that (2) we study whether crayfish
inhibit the return of macrophytes, when abiotic conditions for
growth seem favourable. There has been documentation that
water birds and large fish may jeopardize restoration efforts
[17-23], but we are the first, to our knowledge, to show that
invasive crayfish may also threaten successful lake restoration,
e.g. the return of macrophytes. We show that invasive crayfish
P. clarkii strongly inhibit macrophyte development once
favourable abiotic conditions for macrophyte growth are
restored. We conclude that invasive crayfish may compromise
restoration measures and that the continuing expansion of
invasive crayfish populations throughout north-western Europe
poses a new threat to successful restoration of clear water with
abundant submerged vegetation.

Materials and Methods

Ethics statement
The study was conducted on the terrain of Waternet.

Waternet gave permission to work on their property as well as
to conduct this study. No further permits were required for the
described study, which complied with all relevant regulations.
The study did not involve endangered or protected species.

Study design
We experimentally tested the effect of the invasive crayfish

P. clarkii on the development of submerged macrophytes within
a restored shallow peat lake in The Netherlands. We used two
enclosed lake sections, hereafter called ponds, where
seemingly favourable abiotic conditions for macrophyte growth
were found. In situ enclosures and exclosures in both ponds
allowed us to investigate separate and combined effects of
crayfish and native herbivores (fish and waterfowl) on the
growth of three introduced plants. We analysed diet
composition of P. clarkii using gut content analysis to
determine whether they consumed the plants.

Study area
The experiment was conducted in the western part of Lake

Terra Nova (52°13’N, 5°02’E), The Netherlands (Figure 2).
Lake Terra Nova is an 85 ha shallow peat lake in which
different restoration measures were taken in the past. The lake
has a mean depth of 1.4 m and the bottom is covered with a
0.9 m organic sediment layer. Until the early 1970’s, a highly
developed macrophyte community consisting of various
Characeae and Potamogeton sp., covered the lake bottom
[21]. An increase in P loading was observed after 1977 and as
a consequence the lake shifted from a clear macrophyte-
dominated system to a turbid algae-dominated system in which
only floating and sparse submerged macrophytes remained
[21]. In 2003, biomanipulation was applied in which the
benthivorous sediment disturbing fish assemblage was
reduced from 180 kg ha-1 to less than 25 kg ha-1 cyrpinid fish
biomass, which resulted in clear water and the return of many
macrophyte species [21]. However, despite continued fishing
keeping the cyprinid fish at low biomass, the macrophyte
revival was only brief and in 2010 most of the lake contained
bare sediment with scattered floating plant vegetation and
turbid water through summer algal blooms. Red swamp
crayfish were first reported in 2006 in the lake area (Figure 1)
and may have been present since the early 2000’s, but
numbers have not been documented. To test whether
restoration measures would prevent algal blooms and stimulate
the return of submerged macrophytes, two ponds of
approximately 0.5 ha each were constructed in the western
part of Lake Terra Nova in 2003 (Figure 2). In one pond FeCl3
was applied in 2009 to reduce internal P loading (gradual
addition over a period of 102 days to a total of 85 g Fe m-2).
However, in both ponds clear water conditions existed,
whereas no submerged macrophytes were observed in either
pond in 2009 or 2010 prior to this study and only floating
leaved species (Nuphar lutea L. and Nymphaea alba L.) were
present and Phragmites australis (Cav.) Trin. ex Steud. was
the dominant species along the shores. We counted and
sampled the potential herbivores, respectively water birds, fish
and crayfish in and around the ponds (see Table 1 and 2 for
methods, densities and species of waterbirds and fish).
Crayfish abundance was determined by surveying both ponds
simultaneously with 12 cylindrical crayfish traps (75 cm long,
diameter 30 cm, 1.2 x 1.2 cm mesh) baited with cat food, which
were checked every three days for five weeks prior to the
experiment. Crayfish were individually marked. Only two
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crayfish were recaptured; numbers are therefore minimum
number of crayfish present.

At the start and the end of the experiment we sampled
environmental variables from the water column and sediment in

Figure 1.  Map of records of the exotic crayfish Procambarus clarkii in the Netherlands.  The data are a combination of
(muskrat) trapping surveys, netting surveys and sightings of specimens migrating overland, n=1534 records. The study site is
located at the lower tip of the black line.
doi: 10.1371/journal.pone.0078579.g001
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both ponds; see Methods S1 for the methodology and Table S1
for the results.

Experimental set-up
To analyse the effect of different herbivores on the

development of macrophytes we performed an experiment in
both ponds with four different grazing treatments: a full
exclosure in which all studied herbivores were excluded, a
partial exclosure providing access to crayfish and small fish, an
enclosure, stocked with only crayfish, and a control where all
herbivores had access to (Figure 2). Exclosures and
enclosures consisted of cages of 1 m3 and were closed on all

six sides, control plots were 1 m2. The corners of each cage
were fixed with bamboo poles in the sediment and the control
plots were marked with a pole. In each pond, each treatment
was replicated seven times following a randomized block
design (Figure 2); plots within a block were 2 m apart from
each other. Each block of four treatments was placed randomly
in the pond, but at least 15 m from the nearest other treatment
block at the start of the growing season in 2011 (April 18th

2011). Water depth in the cages ranged between 0.7 - 0.9 m;
none of the cages was completely submerged and thus no
algae were growing on the top, allowing maximum light
availability inside the cage.

Figure 2.  Overview of Lake Terra Nova and design of the cage-experiment.  (A) Lake Terra Nova with ponds indicated in the
black box. (B) Enlarged overview of the study ponds with the grazing treatments arranged in blocks within the iron pond (iron
suppletion) and non-iron pond. (C) Legend of the grazing treatments applied. In the partial exclosure, mesh size was 5 cm height
and 10 cm width to allow undisturbed access for large crayfish.
doi: 10.1371/journal.pone.0078579.g002

Invasive Crayfish and Lake Restoration

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e78579



Since no submerged macrophytes were present in the
ponds, three species of submerged macrophytes known to
have occurred in Lake Terra Nova [21] were collected from
nearby ponds and introduced. Two shoots of Chara virgata
Kützing (mean DW 0.54 g ± 0.02 SE), Elodea nuttallii (Planch.)
St. John (0.12 ± 0.01 g), and Myriophyllum spicatum L. (0.14 ±
0.02 g) were planted in separate square plastic pots (11 x 11 x
12 cm; one pot per species and two shoots per pot) filled with
sediment originating from the pond where they were
subsequently planted. Two replicate pots of the three species
were randomly mounted on metal frames (50 x 50 cm). These

Table 1. Overview of densities of waterfowl around the
ponds.

Waterfowla Individuals ha-1

Tufted duck (Aythya fuligula L.) 4.3
Eurasian coot (Fulica atra L.) 2.9
Common pochard (Aythya farina L.) 1.4
Greylag goose (Anser anser L.) 1.4
Gadwall (Anas strepera L.) 1.4
Egyptian goose (Alopochen aegyptiacus L.) 0.7
Mallard (Anas platyrhynchos L.) 0.7
Mute swan (Cygnus olor Gmelin) 0.6

a. Water birds present in the water in and around the ponds (an area
encompassing 0.07 km2) were counted weekly in April and May 2011 using
binoculars, data are means of the weekly counts.
doi: 10.1371/journal.pone.0078579.t001

Table 2. Numbers of fish caught in the study ponds.

Fish CPUEa
Electro fishing
(Individuals ha-1)

Gill nets (Individuals m-1

net)

 

Non-
iron
pond

Iron
pond

Fish
length
range
(cm)

Non-iron
pond

Iron
pond

Fish
length
range
(cm)

Rudd (Scardinius

erythrophthalmus L.)
35 69 3-7 0 0.008 14

Perch (Perca fluviatilis

L.)
2482 414 7-15 0.16 0.24 8-22

Ruffe (Gymnocephalus

cernuus L.)
0 0  0.03 0.008 7-13

Pike (Esox Lucius L.) 69 0 30-74 0 0  
Tench (Tinca tinca L.) 35 0 3 0.016 0 43-47
Roach (Rutilus rutilus

Rafinesque)
2 0 4-6 0 0  

a. Fish catch per unit effort. Fish abundance in each of the ponds was determined
on 25 and 26 October 2011. Shoreline abundance was determined by
electrofishing (200 volt, 5 amp, 290 m shore line length sampled per pond, 1 m
transect width). Open water fish abundance was determined by overnight
placement of multi-mesh gill nets (10-110 mm; total length 75 m) and an additional
gillnet (140 mm; length 50 m) and additionally for 2 hours during the day on 25
October.
doi: 10.1371/journal.pone.0078579.t002

frames, thus containing a total of 6 pots each (2 replicates x 3
species), were subsequently placed in each grazing treatment.

For the enclosure treatment, crayfish were caught with
crayfish traps in Lake Terra Nova at about 500 m distance from
the ponds. Crayfish were placed in the enclosures on the day
of capture. At the start of the experiment, four adult crayfish
were introduced in each enclosure (mean biomass per crayfish
37.4 g ± 2.0 SE, Ntot = 56, female:male ratio 1:1.7). The
crayfish density in the enclosures (150 g m-2 wet wt)
approached the higher densities estimated for Lake Terra Nova
(up till 191 g m-2 wet wt, [41]). Crayfish densities vary widely in
the field and are reported to range from 0.8-13 individuals m-2

in the meta-analysis of Matsuzaki et al. [38], who use 140 g m-2

as a high density in their own experiments. Gherardi and
Acquistapace [37] report 4 and 8 individuals m-2 as natural
densities in Italy, whereas Rodriguez-Villafane et al. [33]
estimate a density of approximately 1 individual m-2 for a
Spanish lake, although they indicate that this is probably an
underestimation of the real density.

Harvest
Six weeks later (May 31st 2011), when the canopy-forming

species M. spicatum and E. nuttallii had reached the water
surface in a majority of the full exclosure plots, the plants were
harvested. Macrophytes from all treatments were harvested
and transported to the lab, rinsed with running fresh water,
dried for 48 h at 60°C and weighed. Crayfish were collected
from the enclosure cages and frozen at -20°C for gut analysis.

Crayfish diet
Crayfish gut content analysis was performed on 41

individuals in total from the enclosures from both ponds (22
from the iron pond and 19 from the non-iron pond) and 20 from
the natural population in the ponds (10 per pond) caught
outside the treatment blocks at the end of the experiment with
the same traps used to estimate crayfish numbers (see Table
2). The crayfish were dissected and the stomach was removed
from each individual and subsequently washed out to dilute the
gut contents [42]. Food items (recorded as either present or
absent in each specimen) were identified to the nearest
recognizable taxonomic level with a dissecting microscope.

Presence of plant propagules
To investigate whether the sediment of the ponds contained

viable plant propagules, in total 25 L of the upper 5 cm of the
sediment from three random locations in each pond was
collected during the harvest of the transplants (on May 31st

2011). The pooled sediment sample of each pond was taken to
the lab and distributed over three 60 L aquaria, resulting in a
ca. 3 cm sediment layer in each aquarium. Aquaria were
subsequently filled with tap water (15 cm depth), and placed in
a greenhouse at 20 °C under natural light conditions. Plants
were allowed to emerge during 18 weeks after which all plants
that had emerged were counted and identified to species level.

Invasive Crayfish and Lake Restoration
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Data analysis
Survival and biomass data of the plants were analysed using

R version 2.15.0 [43]. Since survival of transplants followed a
binomial distribution, effects of grazing treatment and pond on
survival were analysed by fitting generalized linear mixed effect
models with pond, grazing treatment and their interaction as
fixed factors and treatment block and plant duplicate as
random factors. The biomass of the plants (logarithmically
transformed) was analysed by fitting general linear mixed effect
models. Models were fitted with the lmer function in the lme4
package [44]. To determine effects of fixed factors a likelihood
ratio test was used to compare models with and without the
variable of interest [45]. Post-hoc comparisons of means were
made based on Tukey contrasts available in the multcomp
package. Assumptions of normality for general linear mixed
models were checked by plotting residuals and performing a
Shapiro test on residuals.

Results

Herbivore presence
The herbivores and omnivores present in and around the

ponds were water birds, fish and crayfish (Table 1 and 2). With
respect to crayfish, only Procambarus clarkii was caught in the
ponds. In total 178 crayfish were caught in the non-iron pond
and 66 in the iron pond, corresponding to respectively 0.42 and
0.16 CPUE (individuals per trapnight, based on 12 traps and 35
nights in each pond). Both ponds were characterized by low
numbers of fish, predominantly existing of smaller sized perch,
although the non-iron pond also harboured some larger
individuals of pike and tench (Table 2). The biomass of
benthivorous fish (rudd, ruffe, tench and roach) amounts to 0.2
kg ha-1 averaged over both ponds (based on CPUE of
electrofishing, weight data not shown).

Effect of herbivores on macrophyte development
Macrophyte growth and survival was significantly affected by

grazing treatment (Figure 3, Table 3). Free herbivore access
strongly reduced survival and growth of all three macrophytes,
which produced most biomass when fully protected from
grazing (Figure 3, Table 3). Biomass of E. nuttallii and C.
virgata was strongly reduced in all three treatments with
herbivores. Similarly, biomass of M. spicatum was reduced in
all treatments with herbivores in the iron pond, whereas in the
non-iron pond, biomass in the partial exclosure was
intermediate and not significantly different from the full
exclosure or full enclosure and control (Figure 3, Table 3). The
effect of grazing was stronger in the iron pond compared to the
non-iron pond for E. nuttallii and M. spicatum. Biomass of M.
spicatum was significantly higher in the full exclosures in the
iron pond compared to the non-iron pond, whereas there was a
similar trend, but no statistical differences, for E. nuttallii and C.
virgata (Figure 3, Table 3). Survival of the macrophytes was
similar in both ponds (Figure 3, Table 3). There was some
mortality of crayfish in the enclosures, which had reduced
stocked crayfish biomass in the enclosures whereas the
surviving crayfish were growing, resulting in a final mean
biomass per enclosure of 151.1 g ± 17.7 SE in the iron pond,

and 132.4 g ± 9.4 in the non-iron pond which was not
significantly different (t-test, df=12, t =0.932, P=0.370).

Germination of propagules
Each plot was checked for naturally emerging macrophytes

in the field, but none were found on 31 May, after 6 weeks of
exclosure treatments. Germination in the greenhouse showed
that the sediment of both ponds contained viable propagules of
macrophytes. Forty-eight individual macrophytes germinated
from the sediment of both ponds combined, representing 8
species. In the sediment from the non-iron pond we found
Chara globularis (3 individuals), Myriophyllum spicatum (4) and
Tolypella prolifera (1), in the iron pond Potamogeton pusillus L.
(1) as submerged species. Nuphar lutea (L.) Sm. was the only
floating species and was found in both ponds (5 individuals in
total). The emergent species were more abundant: Typha
angustifolia L. (19), Juncus articulatus L. (4) and Lythrum
salicaria L. (7), all species found in both ponds.

Crayfish diet
Gut content analysis of the crayfish in the enclosures

showed that the percentage of crayfish with animal remains in
their stomach was considerably larger than the percentage of
crayfish with vegetal remains in their stomach, whereas the
majority of the free-living crayfish in the ponds had both animal
as well as vegetal remains in their stomach (Table 4).

Environmental conditions
The abiotic conditions were very similar in both ponds (see

Table S1). The iron pond had a higher attenuation of light,
despite lower chlorophyll-a concentration, but in both ponds
there was on average more than 15% of ambient light available
at the bottom. The iron pond had a significantly higher Fe
concentration in the surface water and sediment and a higher
sediment P concentration. P and PO4 in the water column were
higher at the start but lower at the end of the experiment,
whereas NO3 was lower at the start and higher at the end in the
iron pond compared to the non-iron pond respectively (Table
S1).

Discussion

Invasive crayfish P. clarkii can inhibit the development
(growth and survival) of submerged macrophytes while abiotic
conditions for macrophyte growth were favourable as
demonstrated in our experiment. Survival and biomass of the
three submerged macrophytes was significantly lower when
crayfish were present, whereas the plant species grew well in
both study ponds when they were protected from crayfish and
other herbivores. When protected from grazing, Myriophyllum
grew better in the iron pond, but there was no significant
difference for the other species. The establishment of the
ponds as lake enclosures may have provided enough shelter
from the wind to prevent sediment resuspension and allow
clear water conditions [21] regardless of iron addition, whereas
differences among the ponds may have been present before
the iron addition as well. We conclude that in both ponds, the
light availability was with more than 15% of ambient light on the
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Figure 3.  Biomass and survival of transplanted macrophytes under different grazing treatments.  Mean biomass (left panels)
and survival (right panels) of C. virgata (A,B), E. nuttallii (C,D), and M. spicatum (E,F) transplants at the end of the experiment for
the non-iron and iron pond. Different letters or numbers in biomass panels indicate significant differences between treatments for
the iron pond and non-iron pond respectively (Tukey post hoc comparisons, P<0.050). Significant differences in transplant biomass
between ponds within a single treatment were found for Elodea biomass in the partial exclosure and for Myriophyllum biomass in
the full exclosure and are indicated by asterisks (Tukey post-hoc comparisons, * P<0.050; ** P<0.01; ***P<0.001). For the survival
panels, different letters indicate significant differences between treatments only. See Table 3 for results of the statistical analyses.
doi: 10.1371/journal.pone.0078579.g003
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lake bottom (and often much more) above the minimum light
requirements for growth of caulescent submerged angiosperms
and charophytes [46] and therefore abiotic conditions were
suitable for macrophyte growth in both ponds. During our
experiment, we did not observe naturally emerging vegetation,
which may perhaps be due to the short term (6 weeks) or early
season (April-May) in which we performed the experiment. The
presence of viable propagules of several submerged species in
the sediment suggests that the absence of submerged
vegetation in the entire ponds is not due to a lack of propagules
per se. We therefore further focus on the role of invasive
crayfish and their potential to inhibit macrophyte growth and

Table 3. Effect of pond (iron and non-iron) and grazing
treatment on biomass and survival of three transplanted
macrophyte species.

  Pond Grazing treatment Pond x Grazing

Parameter Species Χ2 df P Χ2 df P Χ2 df P
Biomass E. nuttallii 11.56 4 0.021 95.77 6 <0.001 11.21 3 0.011

 
M.

spicatum
33.60 4 <0.001 91.84 6 <0.001 25.29 3 <0.001

 C. virgata 6.77 4 0.149 51.40 5 <0.001 5.55 3 0.136
Survival E. nuttallii 7.17 4 0.127 27.74 6 <0.001 5.24 3 0.155

 
M.

spicatum
55.78 4 0.233 58.88 6 <0.001 5.32 3 0.150

 C. virgata 16.61 4 0.002 34.17 6 <0.001 5.42 3 0.143

Results (likelihood ratio tests) of general linear mixed effects models (biomass)
and generalized linear mixed effect models (survival) per macrophyte species (see
also Figure 3). Df – degrees of freedom.
doi: 10.1371/journal.pone.0078579.t003

Table 4. Occurrence of food items (presence – absence) in
crayfish guts from individuals collected from the full
enclosures (n=41) and the natural population in the field
(n=20), at the end of the experiment.

Identified food item: Crayfish in enclosures Free-living crayfish
Detritus 44 70
Remains of higher plants 17 75
Remains of filamentous algae 20 50
Diptera larvae 51 10
Crustacea 51 30
Gastropoda 5 10
Hydrachnidia 10 20
Protozoa - Amoeba 7 45
Unknown animal remains 22 55
Unknown remains 44 0
 Subtotals:   
Animal remains 66 80
Vegetal remains 34 85

Data show the percentage of crayfish (in relation to the total number of dissected
individuals) for which the given food item was present in the stomach.
doi: 10.1371/journal.pone.0078579.t004

development once favourable abiotic conditions for growth
have been created.

Whereas invasive crayfish are known to reduce macrophyte
abundance in southern and northern Europe [33,37,47] and
inhibit propagule establishment in mesocosms [38], their
impact on macrophyte establishment in field restoration
projects has not yet been tested to our knowledge. We show
that invasive crayfish may present a new bottleneck for
macrophyte development in north-western European waters
when abiotic conditions for macrophyte growth are restored. In
north-western Europe, many lake restoration projects have
been executed and are still being implemented, aimed at
improving water transparency and development of abundant
macrophyte vegetation [5-8,48]. Our results suggest that these
projects may face a new constraint with the increasing spread
of invasive crayfish, particularly P. clarkii.

Effects of crayfish versus other potential herbivores
The enclosure treatments with only crayfish present showed

that crayfish strongly reduced survival and growth of
submerged macrophytes. Furthermore, the very small
differences between the enclosure treatment (access for
crayfish only) and the partial exclosure (access for crayfish and
small fish) and the control treatment (access for all herbivores)
indicate strong effects of crayfish and no significant additive
effects of waterfowl and larger fish. Smaller fish that could
enter the partial exclosures were present in the study ponds.
Technically, very small fish could even have entered the full
exclosure or crayfish enclosure with the mesh size of 1 x 1 cm
and reduce plant growth. However, this would have led to
reduced growth of the macrophytes in the full exclosure,
whereas we observed a much higher plant growth in the full
exclosure compared to the treatments where larger herbivores
had access. Therefore, if very small fish did enter the full
exclosure, we estimate their impact on plant growth to be very
small. Small fish may have entered the partial exclosure, in
which the mesh was oriented such that it was 10 cm wide and
5 cm in height (to allow optimal access for large crayfish, which
are wider than tall due to their claws). However, the density of
fish in the study ponds was generally very low and most fish
were not herbivorous. Of the fish that include macrophytes in
their diet, e.g. rudd and tench, the smaller size classes are
mostly carnivorous [49,50] and even the large fish of these
species preferentially feed on macrofauna under temperate
conditions, as demonstrated for rudd [51,52]. When feeding on
invertebrates, fish may inadvertently ingest the macrophyte
leaves which have macrofauna on them. Smaller roach (of 7
cm and larger) for instance have been observed to pluck
macrophyte leaves when consuming macro-invertebrates on
the leaves, although they mostly do so when zooplankton and
other food sources are scarce [53]. This is in line with
observations in a Finnish lake, where in spring, when
zooplankton is abundant, small (<10 cm) rudd does not ingest
plant material and only larger rudd consumed plants [50].
Furthermore, significant effects of plant plucking on
macrophyte growth were observed in Lake Müggelsee at a fish
biomass of >150 kg ha-1 of which 70-80% consisted of bream
and roach [23,53]. In contrast, fish density in our study ponds
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was much lower with 0.2 kg ha-1 for benthivorous fish,
estimated from the electrofishing CPUE. Previous removal of
benthivorous fish in our study lake showed that a reduction
from 180 to <25 kg ha-1 biomass of cyprinid fish, resulted in
strong growth of submerged macrophytes [21]. Therefore,
whereas we cannot entirely exclude that small fish may have
had an additional impact on macrophyte growth in our study, a
large part of the difference in plant growth among the partial
exclosure and crayfish enclosure versus the full exclosure is
likely caused by crayfish considering the low density and diet
preferences of small fish and the high crayfish density.
Whereas it was known that grazing by water birds or fish can
be a limiting factor in the appearance of submerged vegetation
[17-23], we now show that the presence of crayfish can inhibit
the establishment of submerged macrophytes in a lake
restoration project. The absence of an additional effect of water
birds and large fish demonstrates that crayfish alone are
potentially able to prevent restoration of submerged vegetation.

Crayfish grazing versus bioturbation
It is often unclear whether observed crayfish impact on

macrophytes is caused by herbivory or bioturbation [38]. In our
study, gut content analysis showed that P. clarkii had an
omnivorous diet, with animal and plant material and detritus
found equally often in free living crayfish. The gut of the
crayfish in the enclosures contained more frequently animal
material. This may be due to the fact that most plant material
had already been consumed at the end of the experiment and
thus was no longer available. These results agree with
previous studies that showed crayfish to be omnivorous
[28,47,53,54]. In our study the crayfish did consume
macrophytes and thus at least part of their impact on
macrophytes was due to herbivory. However, we cannot
exclude that part of the observed effects of crayfish may also
be due to bioturbation, particularly destruction or uprooting of
the planted macrophytes [55].

Effect of crayfish during lake restoration
Invasive crayfish may reduce macrophyte abundance and

induce a shift to a turbid, algae dominated, state of the
ecosystem [27,33]. The goal of many restoration projects is to
reverse a turbid state into a clear water state dominated by
submerged macrophytes [2]. Once appropriate measures have
been taken macrophytes may return, when propagules are
available [15,16,48]. The question is to what extent invasive
crayfish may inhibit the return of submerged macrophytes and
therefore compromise restoration efforts. The impact of
crayfish on the establishment and development of submerged
macrophytes is potentially large as they live on the sediment,
which is where macrophytes emerge from propagules. Crayfish
have been shown to strongly suppress macrophyte
establishment from a propagule bank in mesocosm studies
[38]. Contrary to herbivorous waterfowl, which are frequently
mentioned as consumers of establishing macrophytes [18-20],
crayfish stay in a lake year round and are able to feed on
alternative sources like detritus [56] on which they can sustain
themselves when macrophytes are absent [57]. As a result,

crayfish density will not be strongly coupled to the availability of
macrophytes in lakes with organic sediments, such as our
study lake. Therefore, grazing pressure on macrophytes is
potentially high, particularly when predation on the crayfish is
low, for instance when fish densities are low due to
biomanipulation, as is the case in our study lake [40].

Species invasions in general occur more often in disturbed
situations [58] where exotic species can opportunistically
invade (temporarily) empty niches [59]. P. clarkii is an
opportunistic species due to its omnivorous feeding habits and
semi-amphibious life style [28,57]. Possibly lake restoration
projects are more prone to colonization by invasive crayfish,
but to our knowledge, this has not been investigated.

Conclusions

We conclude that P. clarkii strongly reduced the biomass
development and survival of establishing macrophytes.
Invasive crayfish may form a new constraint on the
development of submerged aquatic vegetation when abiotic
conditions for macrophyte growth are improved. Invasive
crayfish may compromise restoration measures and pose a
new threat to successful restoration of clear water with
abundant submerged vegetation. The continuing expansion of
invasive crayfish populations throughout north-western Europe
is worrying. Strong emphasis should be put on prevention of
introduction and where possible spread of the crayfish, since
removal or management of invasive crayfish populations is
very difficult [32].
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