Inertia in an ombrotrophic bog ecosystem in response to 9 years’ realistic perturbation by wet deposition of nitrogen, separated by form

*Centre for Ecology & Hydrology Edinburgh, Bush Estate, Penicuik EH26 0QB, UK, †School of Geosciences, University of Edinburgh, West Mains Rd, Edinburgh EH9 3JN, UK, ‡ACrosstech, Deanfoot Rd, West Linton, Peeblesshire EH46 7AU, UK, §John Dalton Building, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK, ¶Department of Aquatic Ecology & Environmental Biology, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands, ||B-WARE Research Centre, Radboud University Nijmegen, P.O. Box 6558, Nijmegen, 6503 GB, The Netherlands, **Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK

Abstract

Wet deposition of nitrogen (N) occurs in oxidized (nitrate) and reduced (ammonium) forms. Whether one form drives vegetation change more than the other is widely debated, as field evidence has been lacking. We are manipulating N form in wet deposition to an ombrotrophic bog, Whim (Scottish Borders), and here report nine years of results. Ammonium and nitrate were provided in rainwater spray as NH$_4$Cl or NaNO$_3$ at 8, 24 or 56 kg N ha$^{-1}$ yr$^{-1}$, plus a rainwater only control, via an automated system coupled to site meteorology. Detrimental N effects were observed in sensitive nonvascular plant species, with higher cumulative N loads leading to more damage at lower annual doses. Cover responses to N addition, both in relation to form and dose, were species specific and mostly dependent on N dose. Some species were generally indifferent to N form and dose, while others were dose sensitive. Calluna vulgaris showed a preference for higher N doses as ammonium N and Hypnum jutlandicum for nitrate N. However, after 9 years, the magnitude of change from wet deposited N on overall species cover is small, indicating only a slow decline in key species. Nitrogen treatment effects on soil N availability were likewise small and rarely correlated with species cover. Ammonium caused most N accumulation and damage to sensitive species at lower N loads, but toxic effects also occurred with nitrate. However, because different species respond differently to N form, setting of ecosystem level critical loads by N form is challenging. We recommend implementing the lowest value of the critical load range where communities include sensitive nonvascular plants and where ammonium dominates wet deposition chemistry. In the context of parallel assessment at the same site, N treatments for wet deposition showed overall much smaller effects than corresponding inputs of dry deposition as ammonia.

Keywords: ammonium, cover, Calluna, chronology, critical loads, growth, nitrate, peatland, Sphagnum capillifolium

Received 11 June 2013 and accepted 11 June 2013

Introduction

Globally, evidence exists of detrimental effects of enhanced reactive nitrogen (N) deposition on plant species composition (Clark & Tilman, 2008; Bobbink et al., 2010). Although reactive N is a key plant nutrient (Marschner, 1995), its availability varies across different habitats. Plants have evolved different, specialized strategies and traits appropriate to their natural N environments (Raven et al., 1992). In the presence of increased N availability species that have evolved traits or strategies to exploit an enriched N supply can replace N conservative N users (Aerts, 1990; Steubing & Fangmeier, 1991). Such species replacements can lead to loss of specialized communities and ecosystems, e.g. heathland transformed into grassland in the Netherlands (Bobbink & Heil, 1993). However, reactive N deposition is not simply N, but comprises two chemically different forms, oxidized and reduced N.

Enhanced reactive nitrogen deposition is a consequence of rising global emissions of the nitrogen oxides NO and NO$_2$ (NO$_x$) from fossil fuel combustion (Dignon & Hameed, 1989), which together with nitric acid and nitrates (NO$_3^-$), produced through atmospheric reactions, constitute oxidized nitrogen (NO$_y$). These combine with increasing global emissions of
ammonia (NH₃) from agriculture to meet the growing demand for energy and food, which reacts to form ammonium (NH₄⁺) in particulate matter and precipitation. Together with smaller contributions from organic nitrogen compounds, these components constitute the largest part of atmospheric reduced N (NH₃). The particulate and aqueous NO₃⁻ and NH₄⁺ salts or aerosols of acidic gases have a relatively long atmospheric residence time, 4 to 15 days, and when removed by precipitation contribute to N deposition in remote ecosystems, after long-range transport (Asman et al., 1998). Proportions of NH₄⁺ and NO₃⁻ ions in precipitation, like the ecosystems they deposit to, vary spatially reflecting the non-uniform distribution of their sources and topography (RoTAP, 2011).

Evidence of the respective effects of reduced and oxidized nitrogen to (semi) natural habitats is urgently needed to support targeted emission control in either fields of agriculture and energy sectors or both (Bobbink & Hettelingh, 2011; RoTAP, 2011). Similarly, there is a pressing need to establish whether N critical loads (CLN) should be separated by form, as we lack comparable evidence on which to judge whether one or other form is more damaging and under what circumstances (Bobbink & Hettelingh, 2011; RoTAP, 2011). Very few studies have addressed the importance of the form of reactive N in wet deposition (e.g. Paulissen et al., 2004; Van den Berg et al., 2008) and none have studied these effects in the field at low background N deposition and for a extended (>5 year) period.

Due to the fact that many species show unimodal response curves to nutrient additions, it is necessary for field N-manipulation studies to: (i) start from a clearly defined point on the response curve, (ii) be maintained long enough to fully capture the N response and (iii) avoid sites with background N loads that may have already pushed the ecosystems onto the falling side of the curve (Sverdrup et al., 2013).

Semi-natural ecosystems that rely on atmospheric inputs for most of their nutrient supply e.g. ombrotrophic bogs and peatlands are considered to be particularly at risk from enhanced N deposition (Bobbink & Hettelingh, 2011). Much of the component vegetation, e.g. mosses, Sphagnum species and lichens are described as nitrophobes (N sensitive) and their presence has formed the basis for setting CLN in many ecosystems (Bobbink & Hettelingh, 2011). There is a significant literature (Berendse et al., 2001; Limpens & Berendse, 2003; Bragazza et al., 2004; Gunnarsson et al., 2004; Paulissen et al., 2004; Gunnarsson & Rydin, 2000; Bobbink & Hettelingh, 2011) detailing adverse effects of enhanced N deposition on Sphagnum species, the main peat forming moss (Van Breeman, 1995) which can change the nature and function of bogs. There is a pressing need to establish the extent of N-driven changes in species cover on peatlands because of their importance for the global C balance, the link between vegetation and greenhouse gas emissions and the implications for up-scaling (Joabsson et al., 1999; Gray et al., 2013). The experiment described here is an ongoing study of the effects of N form on species cover that has been running for more than a decade at a relatively N clean site where we have realistically manipulated wet N deposition to an ombrotrophic bog.

Our experiment addressed some key concerns on field N-manipulation experiments, namely: (i) background N deposition (ca. 8 kg N ha⁻¹ yr⁻¹) at the Scottish site is relatively low by European standards (apart from northern latitudes); (ii) the simulation of wet deposition is highly realistic (Phoenix et al., 2012), being coupled to meteorology; (iii) the duration of the experiment has been sufficient to characterize N response curves over a 10 year period. We expected to find rapidly initiated, contrasting effects of enhanced wet N deposition on the cover of key species, providing corroborative evidence on the importance of N form together with a long-term assessment of N effects on the valuable peatland ecosystem.

Aims

- To demonstrate the long-term consequences of different N forms in wet deposition on the cover of key components of an ombrotrophic bog, peatland.
- To establish whether changes in the proportions of different species can be related to cumulative (averaged over the most recent assessment period) treatment effects on soil pH and N availability, soil water nitrate and ammonium.
- To address the significance of N form in wet N deposition (NO₃⁻ vs. NH₄⁺) and the implications for separating CLN by form.

Methods

Site

Whim bog is located in the Scottish Borders, at 282 m a.s.l, 3°16’ W, 55°46’ N, on 3-6 m of deep peat. No active management for at least 70 years has left a very uneven aged Calluna vulgaris stand (hereafter shortened to Calluna) with plants ranging from mature to degenerate (Gimingham, 1972). The peat is very acid, with a pH ca. 3.4 range 3.27–3.91 (H₂O), 10% base saturation and low in available P and K (Table S1). The vegetation conforms best to NVC M19 (UK national vegetation classification, mire) and repeats in heterogeneous mosaics, with hummocks dominated by Calluna and Sphagnum capillifolium, hollows with S. fallax and S. papillosum and cyperaceous graminoid species of Eriophorum (Mizunuma, 2008). The most
common species on this bog, Calluna, E. vaginatum, S. capillifo-
lium, Hypnum jutlandicum, Pleurozium schreberi and Cladonia
portentosa occur widely on similar habitats through the northern
ern hemisphere (Gore, 1983).

Treatments

The treatments, replicated in four 12.8 m² plots, are supplied
at three doses of N: 8, 24 and 56 kg N ha⁻¹ yr⁻¹, in addition
to the total ambient deposition of ca. 8 kg N ha⁻¹ yr⁻¹, as
either oxidized N in NaNO₃ or reduced N in NH₄Cl, referred
to as NoxY and NredY respectively, where Y represents the
annual dose applied excluding ambient deposition, e.g.
Nox56. Treatments provide 10% additional rainwater, col-
clected on site (Sheppard et al., 2004a, 2008b), which dilutes the
N concentrate to 0.57, 1.71 or 4.0 mM corresponding to 8, 24
and 56 kg N ha⁻¹ yr⁻¹. The treatment is applied automati-
cally, via a spinning disc sprayer in the centre of each plot,
when weather conditions permit: sufficient rainfall, air tem-
perature >0 °C and wind speed <5 m s⁻¹, coupling applica-
tion to real world conditions with a realistic frequency, ca. 120
applications yr⁻¹. Treatment commenced in June 2002 and is
provided all year round, when temperatures exceed those
likely to cause freezing.

Meteorological variables are measured at 1 or 15 min fre-
cuencies (Leith et al., 2004; Sheppard et al., 2004a). Annual
wet-only N deposition at this site varies with rainfall amount in
the range 4.6–6.2 kg N ha⁻¹ yr⁻¹, with dry deposited NH₃
<3 kg N ha⁻¹ yr⁻¹. Rainfall, temperature and water table data
(Table S2) are presented for the periods, 2002–2004, 2004–2007,
2007–2009, 2009–2011, representing the periods between spe-
cies cover assessments.

Cover assessments

Three permanent quadrats of 0.25 m² were established in each
plot to include the most common species and, where possible,
most species in the plot, although often in different propor-
tions. Per cent cover data for these three quadrats were aver-
aged to provide a plot value. The same two recorders made all
terms. In most cases, the sum of the cover exceeded
aged to provide a plot value. The same two recorders made all
the assessments. In most cases, the sum of the cover exceeded
the area
covered by the moss was estimated and 10 moss stems were
measured, dried and weighed. The remaining moss was dried
and weighed. N was measured on the dried samples using a
CN analyser. Length and weight per cm in 2009 are presented.
N was also measured in cleaned, dried, ground samples of current year Calluna and E. tetralix shoots, apices of C. porten-
tosa and green leaves of E. vaginatum harvested at the end of the
summer in 2009. Visible damage to nonvascular plants was
assessed subjectively (Sheppard et al., 2011) in all plots. Win-
ter damage to Calluna following the cold winter and hot dry
spring in 2009/2010 was scored in October 2010 as the per-
centage of dead grey shoots per plot (Sheppard et al., 2011).

Soil pH and soil water nitrate and ammonium

In each plot, pH was measured in a 2/1 (v/v) mixture of de-
ionized water and peat originating from one 0–10 cm core
taken below a shallow layer of pleurocarpous moss. Measure-
ments started in 2006 and between 7 and 16 measurements
were made during the interval between quadrat assessments:
(NH₄⁺ and NO₃⁻) were sampled using rhizon suction sam-
pers (Eijkelkamp agrisearch equipment, Gelderland, The
Netherlands), comprising a 6 cm reinforced porous tube,
incorporating a 2 μm filter, inserted 0–10 cm below pleuro-
carpous moss. NO₃⁻ and NH₄⁺ concentrations were measured by
ion chromatography, with a detection limit of 0.018 mg N L⁻¹.

Data analysis

Cover and growth data were tested for normality (Bartlett’s
test and residual plots) and appropriate transformations
(log₁₀, arcsin, square-root) were made if required. A two-way
generalized model was used to separate the effects of N dose
(both forms combined) and form (all doses combined), with
post hoc tests (Tukey) to separate the interactions (N form ×
dose) where justified. Separate comparisons were made for individual years. All analyses were undertaken with
GenStat (GenStat Release 12.1, ©2009: VSN International Ltd,
Harpenden, UK). Significance is indicated when p-values were
<0.05. Statistically significant chronological changes are sum-
mized in Table S4. The data are represented as % cover with
trend lines fitted, linear or polynomial (R² > 0.7) (Fig. S1) and
difference in % cover from the start of the experiment (Fig. S2).

The temporal response in species cover of the four replicate
plots was analysed using the fitting models of Huisman, Olff
and Fresco (referred to here as HOF models) (Huisman et al.,
1993). These were fitted to express the shape of the species
cover response over nine treatment years. Our expectation
was that, where they occurred, responses would be either
monotonic changes in cover (gradual increase or decrease) or
curvilinear, with initial increase followed by decrease. In this
way, the different fitted response models were applied as fol-
ows: I, a horizontal line; II, gradual increase or decrease; III,
rapid initial increase, tending to a new stable value; IV, initial
increase, then decrease. The parameter description of these
fitting models is provided in Huisman et al. (1993). Each of
these model fits were tested using the R package ‘gravy’ (Oksanen, 2004, 2005), with justification of the best model fit described in Table S5. We applied the HOF model fitting to the untransformed cover data for each species and each N treatment (4 replicates) including controls.

Quantifying the effects of N treatment on soil chemistry and species cover change

Nitrogen treatment could drive change in species cover either through ‘direct effects’ from foliar uptake (e.g. mosses and ericaceous shrubs, Bates, 2002; Bobbink & Heil, 1993) or by ‘indirect effects’ from changes in soil chemistry, altering the favourability of conditions for each species. ‘Path analysis’ (statistical method for testing cause and effect, directed dependencies among the variables) was used to separate such direct and indirect effects (Cohen, 1988; Grace, 2006).

A path analysis model (Fig. 1) specifying direct and indirect relationships on individual species (those with sufficient observations) cover was tested separately for each N form, using the same control data. The path analyses were applied to two response variables: species cover in 2011, and the linear slope of change in cover over 9 years. For the purpose of the path analysis, the 2009-2011 average pH and soil solution N chemistry data were used to represent the cumulative effect of N load. Slope coefficients for the path analysis were based on arcsin square root transformed cover data, then centred to zero and standardized to unit standard deviation within each treatment across years. Cover data in 2011 were also centred to zero mean and unit standard deviation across all treatments and plots. The resulting standardized regression coefficients and path coefficients can be interpreted as effect sizes of the magnitude of change in terms of standard deviation following Cohen (1988), where values >0.2 and <0.8 are medium effects and >0.8 are considered large effects.

The path analysis model was written in the Bayesian analytical software OpenBUGS software version 3.2.1. (http://www.openbugs.info/w/). A Bayesian treatment was adopted as this allowed us to estimate all regression parameters and indirect effects in one analysis, while also coping with relatively small sample sizes. Two data values were missing and the Bayesian approach allows these to be estimated by drawing from the posterior predictive distribution of each covariate in the model (Gajewski et al., 2006).

As is normal in path analysis, indirect effects (in this case through soil chemistry) were computed as the product of the standardized regression coefficients for each component path (Grace, 2006). Hence if the standardized regression coefficient expressing the effect of N load on soil pH is designated as beta1 and the coefficient for the effect of soil pH on species cover is designated as beta 2, then the indirect effect of N load on species cover is the product of beta 1 and beta 2. The significance of this term can be readily tested by repeatedly sampling its value from the posterior distribution and counting how many times the estimate is greater or less than zero. The mean of the repeated draws of these binary values gives the required exact probability value for the data. Significance tests of regression parameters were performed in the same manner (Table S6).

Results

Changes in species cover

In control plots species cover changed by up to 100% over the 9 years, increasing: Calluna, H. jutlandicum, declining: P. schreberi, S. capillifolium, E. vaginatum, C. por tentosa or both: E. tetralix. The scale of change fluctuated over time, both with and without N (Figs S1 and S2).

 Significant changes in green Calluna cover only occurred with Nred in 2007, but N-driven increases in dead Calluna foliage and litter were significant from 2004 (Nred56) (Fig. S1). N56 treatments mostly caused

Fig. 1 Path diagram illustrating possible causal/correlative relationships between experimental treatments, soil chemistry and species abundance at Whim Bog.
changes in species cover, whereas N doses below N24 did not produce clear responses. Nonvascular species cover, particularly S. capillifolium did increase with a small amount of N, responding positively though not significantly to the N8 dose. This species showed the clearest dose response, with effects accumulating over time (Fig. S1).

Vaccinium oxycoccus, V. myrtillus and Empetrum nigrum occurred in too few plots for statistical analysis, but trends in cover with N56 were positive (Fig. S1). E. tetralix which represented <1% to 10% cover, showed a short-term positive N response, most noticeable with Nred, 3–4 fold increases significant in 2007 (Fig. S1). E. vaginatum, green leaves, which comprised ca. 25% of the cover, was relatively unresponsive to N form and dose although cover tended to decline, the opposite of Calluna (Fig. S1). Dead and green leaves of E. vaginatum together with Calluna dominated vascular plant cover (40–68%).

Within two years of treatment, there was a positive Nox effect for H. jutlandicum cover (Fig. S2). By 2011, increases in cover with Nox8, 24 and 56 respectively (92%, 61%, 189%) exceeded those for Nred (35%, 21%, 103%). P. schreberi appeared to be N sensitive, especially to Nred: within 2 years cover in the Nred56 plots had declined compared with 9 years for Nox56 (Fig. S2). Effects of ≤24 kg Nred were not significant, despite the 9 year cumulative dose for Nred24 exceeding the 2 year Nred56 dose. The distribution of C. portentosa among the plots was too random for statistical analysis e.g. extensive in plots with drier hummocks but sparse in wetter plots and absent from three sets of control quadrats, (Figs S1 & S2).

Species cover contributing to functional groups at the plot scale, indicated ericoid cover, excluding E. tetralix, was significantly lower with N56 and showed no form effect (Fig. 2). Neither N dose nor form affected graminoid cover. Moss cover responded positively to a small amount of N and Nox (Fig. 2), the latter reflecting H. jutlandicum. Cover of healthy Sphagnum (all species) and S. capillifolium was smaller, although not significantly, the higher the N dose.

Quantifying the shape of the species’ cover response curves – HOF model

Treatments generally induced few significant changes in species cover or deviation from control plots (Fig. 3). Hence, the best fitting model in 20 of 41 possible responses was an intercept-only horizontal line (Fig. 3; model I; Table S5). In the case of P. schreberi, because of the extent of the N damage, there were too few positive nonzero values to fit a model to and results summarize those already described: Nred56 rapid decline and eradication with consistent declines in Nred24 and Nred8, and for Nox, a large decline but only for Nox56 (Fig. 3). E. vaginatum also declined over time in all Nred treatments and in the Nox8 treatment. H. jutlandicum increased significantly over time with Nox8 and N red56 but not significantly with Nred (Fig. 3). E. tetralix showed a significant but small hump, peaking ca. 2007 in all Nred treatments. Calluna responded positively in all treatments but the magnitude was not significantly different from the controls (Fig. 3). These HOF models confirm the relatively small magnitude of species cover changes over 9 years.

Nox vs. Nred effects on difference in cover

Effects of N form on species cover change were relatively small (R² = 0.69), (Fig. S3), although the relationship with Nred was positive, R² = 0.85*, whereas the relationship with Nox was inverse, R² = −0.50, but not significant.

Cumulative dose effects

Where N dose significantly changed species cover, e.g. for S. capillifolium and P. schreberi (Table S2) relationships with cumulative N load were investigated (Fig. 4). Once the cumulative Nred load exceeded 200 kg N S. capillifolium cover decreased slowly. Nred load explained 42% of variation in cover (P = 0.02), but there was no relationship with cumulative Nox load. Pleurozium schreberi cover changes were inversely related to N dose. P. schreberi was more N sensitive than S. capillifolium, halving its cover for a smaller N load (Fig. 4). Both cumulative Nox and Nred loads explained significant amounts of the cover changes in
Fig. 3 Percentage cover (labelled as response proportion of cover, on the y axis) for the major species present in the experimental plots through a time gradient (grad) indicated as 1 to 5 on the x axis representing assessments in 2002 (pretreatment), 2005, 2007, 2009 and 2011 respectively. In each graph, the four points for each year show the variation between four replicate experimental plots. Species cover change over time was fitted to wet deposited oxidized nitrogen (added as NaNO₃) or reduced nitrogen (added as NH₄Cl) for 0 (control), 8, 24 or 56 kg N ha⁻¹ yr⁻¹ = con, nox8, nox24, nox56 or nred8, nred24 or nred56 respectively. The colour of the fitted response line refers to the different empirical models I to IV of Huisman, Olff and Fresco (HOF) as outlined in the Methods. Equations (I \(y = M \times 1/(1+c \times \text{grad}) \); II \(y = M \times 1/(1+e^{a \times b \times \text{grad}}) \); III \(y = M \times 1/(1+e^{a \times b \times \text{grad} \times \text{grad}}) \times 1/(1+e^c) \); IV \(y = M \times 1/(1+e^{a \times b \times \text{grad}}) \times 1/(1+e^c \times \text{grad}) \)) fitted to the models in the HOF procedure; \(y \), the species response variable; \(x \), the gradient variable, \(a, b, c \) and \(d \) are parameters to be estimated and \(M \) is a constant representing the maximum attainable value; 1 for proportions and 100 for percentages. Cv, Calluna; Et, Erica tetralix; Ev, Eriophorum vaginatum; Scap, Sphagnum capillifolium; Hj, Hypnum jutlandicum and Ps, Pleuroziun schreberi.

P. schreberi: Nox = 78%, \(P = 0.0001 \) and Nred = 53%, \(P = 0.007 \). The form effects were significantly different with Nred causing the largest cover reductions.

Shoot extension

Shoot elongation was measured to indicate whether cover changes were related to growth. In 2011, there was a significant positive dose response and effect of Nred on Calluna shoot extension (Table S3). Nred56 increased shoot extension significantly more than Nox56 (post hoc tests). There were no significant treatment effects in 2010, 2009, 2008 and 2007. Shoot extension suggests Nred56 is still stimulating Calluna growth. Hypnum jutlandicum growth data contradicted the cover changes: N dose reduced shoot length per unit weight and there was no N form effect (Table S3). For P. schreberi, N dose significantly reduced both weight per unit length and shoot extension. Neither N form nor N dose significantly affected S. capillifolium capitulum weights in 2006 or 2011 (Table S3). In 2006, capitulum weights were larger with ≤24 kg N ha⁻¹ yr⁻¹, but by 2011 only N8 maintained that positive trend.

Visible damage

In October 2010, there were more grey dead Calluna shoots in N56 plots (Table S3). Pleuroziun schreberi and H. jutlandicum were only damaged in Nred56 plots. Some damage was seen on S. capillifolium but the scores exceeded 4. Cladonia portentosa showed most damage in the N56 plots, especially with Nred.
Foliar N

The N status of all species responded positively and significantly to N dose. N concentrations were highest with Nred (Fig. 5, most points above the 1 : 1 line). The difference between % N in species treated with Nred or Nox was greater at the highest N dose. The largest increases in % N occurred among the nonvascular plants which were more N sensitive than the vascular plants.

Meteorology, soil pH and soil water nitrate and ammonium

Between 2002 and 2011, mean air temperature got colder, reflecting two very cold winters (10/11, 11/12) down to 7 °C. RH has remained relatively constant, between 88 and 91%, likewise the water table at 10 cm below the surface, once recovered from the 2003 drought, and cumulative rainfall. Pretreatment pH values measured in all plots varied by 0.2 pH units (3.45 and 3.65). By 2011, pHs in the Nox plots were up to 0.4 units higher depending on the N dose, whereas pHs in Nred remained similar to control plots but ca. 0.1 units less acid than 2002. Between 2009 and 2011, NO3-N concentrations were relatively low, <0.15 mg L−1 but exceeded control values. N additions significantly increased soil water NO3-N concentrations, but there was no distinguishable trend with time and there was no effect of N form. In control plots, mean soil water NH4-N concentrations were low ca. 0.7 mg L−1. Nox treatments increased soil water NH4-N concentrations, but not in relation to dose. Nred increased NH4-N concentrations in proportion to dose, and concentrations were two to threefold greater than with Nox.

Relating N treatment effects on soil chemistry and species cover using path analysis

Direct effects on species covers. Medium-sized positive and negative effects of increasing loads of Nox were detected for H. jutlandicum and P. schreberi covers in 2011 respectively (Fig. 6). Medium-sized negative effects of Nred load were seen for cover of H. jutlandicum, P. schreberi and S. capillifolium. Increasing Nred load had a significant positive effect on final Calluna cover (Fig. 6). For linear cover change between 2002 and 2011 (Fig. 7), there was only one direct effect: E. tetralix, positive for Nox.

Direct effects on soil chemistry with no transmitted effect on species cover. The only direct effect on soil water chemistry that was not subsequently linked to species cover was a positive relationship between increased NH4+ concentrations and Nred dose (Fig. 6).

Indirect effects on final cover in 2011. Nox load increased pH, positive effect, which decreased P. schreberi cover, large negative effect (Fig. 6). By contrast, increasing Nox had a large positive effect on final H. jutlandicum cover via a positive effect on soil pH (Fig. 6). Increasing Nox load also had a medium-sized negative effect on P. schreberi cover in 2011 via its’ positive effect on soil water NH4+ (Fig. 6). An indirect negative effect of increased Nred on E. vaginatum cover was also detected via its’ positive effect on NH4+ concentrations, but the exact Bayes p-value indicated a 90% rather than 95% chance of a credible relationship (Fig. 7).

Significant effects of soil chemistry variation on species cover were also found that were not associated

with N treatment. These can either reflect lack of statistical power given the noise in the data compared to signal or, they highlight background relationships related to ecological variation in the habitat over time that are independent of the experimental treatments (Figs 6 and 7). Path analysis confirmed that significant differences in the relatively small cover changes could be attributed to changing amounts of applied N. Moreover, it demonstrated that both Nox and Nred caused detectable effects, and that most of the strong negative effects were linked to Nred.

Discussion

In the context of parallel assessment at the same site, nitrogen treatments for wet deposition showed overall smaller effects than corresponding inputs of dry deposition as ammonia (Sheppard et al., 2011).

Importance of this long-term study at Whim bog: capturing a time series to detect resilience

These results highlight difficulties in demonstrating whether, in the absence of a chronology of measurements e.g. the hump back response E. tetralix, an N response is increasing, stagnating or declining. Combining assessments of growth and cover change with foliar N concentrations attributes change to N directly and through the growth measurements can suggest which, if any, physiological processes are being affected or whether cover changes simply reflect competition for resources. For the mosses increases in cover did not always translate into an increase in overall mass, and reduction in moss density can undermine their sustainability (Armitage et al., 2012). The study has highlighted the lack of generic responses within functional groups to both N dose and form e.g. an increase in
Hypnum moss, a large decline in Pleurozium but moderated decline in Sphagnum, the former to Nox and the latter species to both. Using path analysis, we have clearly demonstrated that N can induce change, but based on the HOF model comparisons with the controls, that the magnitude of change over 9 years is mostly small. Effects of N form were pronounced among the sensitive species, with the strongest negative effects associated with Nred and linked to greatly elevated foliar N concentrations. However, given that the keystone Sphagnum was also negatively impacted by Nox, both N forms would need to be controlled to protect peatlands.

A hallmark of the subtlety of realistically applied N deposition effects appears to be that impacts are played out largely via adjustment of the competitive relations of the mix of species present. N effects on Calluna, especially litter fall and associated moss species suggest a key role for the dominant species in responding to elevated N and in turn shaping conditions for subordinate species.

In terms of understanding the mechanisms of damage, our results caution against overinterpreting short term, high-dose studies that elicit damage but where such impacts do not represent realistic ecosystem trajectories over realistic timescales. Some trends from the 2011 whole plot assessment supported the permanent quadrat data. Despite the halving of cover, most plots remain >10% covered in S. capillifolium, indicating slow rates of change and inferring this keystone species is relatively resilient to N impacts. One effect of N, demonstrated by this longer study but often overlooked, was the absence of a dose response: species were mostly impacted by the seven times ambient, 56 kg N ha\(^{-1}\) yr\(^{-1}\) treatment but not by inputs of 28 kg N ha\(^{-1}\) yr\(^{-1}\) or less. Significant form effects on change in species cover were rare except for P. schreberi where Nred was most detrimental.

Consequences of different N forms in wet deposition on the cover of key components of an ombrotrophic bog

Assuming this ombrotrophic bog relies on atmospheric deposition for nutrients, we had expected our manipulation of wet N deposition to change species proportions

![Path diagram showing relationships for Nox and Nred treatments with soil chemistry (2009–2011) and slope of species cover change between 2002 and 2011. Path diagram showing statistically significant relationships between Nox and Nred treatments, soil chemistry averaged over 2009–2011 and cover change between 2002 and 2011 measured as the linear slope of cover vs. year of recording. Numbers on the vertices are regression coefficients based on the analysis of centred and standardized data and can be interpreted as effect sizes.](image_url)
within the vegetation. The nonvascular plant components have no cuticle, absorbing nutrient ions over their entire surface, rendering them both vulnerable to, but also effective competitors for N deposition until they saturate (Bates, 2002). Saturation of this moss filter in peat bogs (Lamers et al., 2000; Curtis et al., 2005) allows mineral N to leak into pore water and soil, accessible to vascular plant roots, facilitating overstorey growth, shading and moss/Sphagnum disappearance (Cornelissen et al., 2001; Nilsson et al., 2002; Bubier et al., 2007). But our data show this is not the only N-induced scenario, especially in the absence of competition for light.

In an earlier study (Sheppard et al., 2011), we reported highly detrimental, visible effects of elevated N deposition as dry deposited ammonia (NH₃) at equivalent N doses to those used in this study. Ammonia-N eradicated S. capillifolium and also the overstorey, arguably through NH₃ toxicity (Krupa, 2003). We suggested that some of the reported N sensitivity of Sphagnum species, such as S. capillifolium, could reflect exposure to elevated NH₃ concentrations, especially in areas where agriculture dominates the landscape. The data reported here support that idea indicating that, in the absence of N-induced eutrophication and ensuing competition effects, the sustainability of S. capillifolium is more resilient to wet N deposition than previously inferred. The curvilinear relationship with cumulative N load suggests that S. capillifolium can adjust to high wet N inputs. To date, the relative proportions of species in this peatland plant community, dominated by unmanaged degenerate Calluna, E. vaginatum and moss understorey have not been destabilized by realistic applications of wet N deposition separated by form.

There are characteristics of this study that could have modified the responses: (i) Method of treatment application: Unlike many N-manipulation studies (Phoenix et al., 2012) N additions were automated and coupled to rainfall, facilitating frequent small N inputs at concentrations more closely resembling those in wet deposition to relatively large inputs (less edge effect). This treatment scenario minimizes artefacts associated with high concentrations/doses (Pearce & van der Wal, 2008), (ii) Manipulation studies mostly apply Nox and Nred combined as NH₄NO₃, which may cancel out or restrict some effects we have seen since they affect pH differently, both within the plant and the soil (Raven, 1988), and have no associated counterions to influence the impact (Evans et al., 2008). But, on balance, one might expect NH₄NO₃ deposition studies to be less, not more damaging, (iii) our study has run three times longer than most and has thus been impacted by the potential for climate interactions e.g. 2003 drought (Carfrae et al., 2007) which can exacerbate N effects (Carroll et al., 1999; Sheppard et al., 2008a,b). Again, this would be expected to reduce, not increase resilience. (iv) The vegetation composition at Whim is typical of NVC M19 (Rodwell, 1991), but the Calluna is old and unmanaged, and may not be capable of significantly growing its’ overstorey and depleting light to the understorey sufficiently to exclude photosynthesis, as happened with Labrador tea (Ledum groenlandicum) at Mer Bleue (Bubier et al., 2007; Juutinen et al., 2010). Also, Calluna only covered 40–60% of the plots so even the significant increase in fallen litter may not have impacted all areas occupied by Sphagnum and the bottom 30 cm or so of stems from >60% of Calluna plants were devoid of greenery.

Implications

This long-term study has demonstrated that an intuitively N sensitive ecosystem can resist destabilizing changes from significant N inputs in wet deposition, such that the cumulative impacts of N deposition have yet to be fully played out. The flattening of the response of S. capillifolium to cumulative N load implies some sensitivity but much more resilience than has been implied from surveys (Smart et al., 2010). Our results suggest that once the initial effects of Nox have manifested themselves additional N makes very little difference, whereas for Nred increasing the N load perpetuates the slow decline. The results challenge the value of short-term manipulations for predicting N effects but suggest soil chemical changes may be the fore runner of further changes in community structure.

Were effects driven by changes in soil chemistry?

Biomass assessments, together with nutrient concentrations in 2009, inferred most N should be in the soil (Sheppard et al., 2013a,b). Thus, we used soil pore water chemistry as the sensitive indicator (Sheppard et al., 2008a,b) for the path analysis. Both soil water N chemistry and soil pH varied spatially and temporally, representing the difference between deposition and the biological activity of the various sink strengths: mosaics of nonidentical plant assemblages. Interestingly, although NO₃⁻ concentrations were dose sensitive in the Nox treatments, the concentrations varied too little to influence the path analysis, unlike NH₄⁺ concentrations in the Nred treatments. Overall, changes in pore water N chemistry appear to have been too small to strongly affect cover: intuitively, we would expect direct effects on vascular plant cover only, but no relationships were identified for Calluna, or E. tetralix. There was a positive effect of Nred on NH₄⁺ concentrations that appeared to influence the decline in E. vaginatum. However, we suggest this reflects enhanced

competition from Calluna stimulated by Nred (Marschner, 1995; Nordin et al., 2006). Pretreatment cover of green E. vaginatum was negatively related ($r^2 = -0.86\%$) to Calluna cover. Counter-intuitively nonvascular plant cover did relate to soil chemistry: 2011 cover of H. jutlandicum and P. schreberi in Nox plots with soil pH (+ve) or soil water NH$_4^+$ (-ve) respectively. Ammonium was not added in the Nox treatment: suggesting N transformations (ammonification, nitrification) are occurring within or on the vegetation, producing ions in proportions that mirror those in soil water? N fixation and methanotroph activity certainly occur within this layer (DeLuca et al., 2002; Raghoebarsing et al., 2005; Larmola et al., 2010). Pleurozium schreberi is sensitive to NH$_4^+$ (Solga et al., 2005). However, mosses have no roots and these mosses occupy niches above the water table excluding direct contact with soil water N concentrations. More likely, the linkage reflects a proxy, working through competition effects which we did not explicitly test for. Calluna cover and litter increased with N addition, likely lowering PAR below that needed for P. schreberi to survive under Calluna (Scandrett & Gimingham, 1989), the moss was often buried under litter and ‘hidden’ from view, particularly in Nred plots. However, P. schreberi decline was shown clearly in the HOF model for Nox56 with path analysis indicating medium negative treatment effects not mediated directly via soil water chemistry, leaving the mechanism unclear.

Manninen et al. (2011) reported effects of the wet N treatments on S. capillifolium capitulum pH at Whim, and we have similar (unpublished data) for H. jutlandicum and P. schreberi, replicating those reported for soil, i.e. higher pH with Nox. Given pH controls many physiological processes (Raven, 1988; Marschner, 1995) we suggest that the positive relationship with pH for H. jutlandicum reflects a more alkaline physiological optimum.

The absence of large increases in soil N availability is consistent with the absence of destabilizing changes in proportions of the key component species and contrasts the large changes with ammonia (Sheppard et al., 2011; 2013a,b).

Sensitivity to N form in nonvascular plants

Nordin et al. (2006) concluded, from manipulating N form in a boreal forest, that Nred decreased moss cover as a result of N accumulation, which did not occur with Nox. Tissue N data (see also Solga et al., 2005) suggest P. schreberi cannot tolerate large (> 30%) increases in its N status; in the Nox56, Nred24 and Nred56 plots, percent N increased by 55, 49 and 109% over the control respectively. Taking into account growth and leaf N concentrations, and the response to the cumulative N load, our results show P. schreberi is damaged by both N forms, but via different mechanisms: Nox via a combination of increased pH and N accumulation and Nred through greater N accumulation. Nred56 caused damage earlier and for a lower cumulative dose than Nox56, but for long-term protection of N-sensitive bryophytes both N forms should be controlled.

Lichens take up and use both N forms equally efficiently (Crittenden, 1989, 1998). Visible damage was most conspicuous in C. portentosa with Nred56, which consistently elevated N concentrations (Hogan et al., 2010) and eliminated it from 3 of the 4 Nred56 plots. Such damage fits the classic phytotoxicity chain response: reduced growth, NH$_4^+$ accumulation and ensuing cellular injury e.g. leaky membranes (Krupa, 2003). However, Nox was also toxic (Hauck, 2010). NO$_3^-$ has to be converted to NO$_2^-$ then NH$_4^+$, both potentially toxic ions, in order to be assimilated (Glime, 2007). If there is insufficient energy, C skeletons or enzyme activity available, these ions can be toxic (Hauck, 2010). Bleaching commensurate with usnic acid breakdown and loss of protection from light damage (Munzi et al., 2009) was recorded in both Nred and Nox plots, together with lower Fv/Fm values indicating reduced photosystem II activity (Sheppard et al., 2004b). In addition, prior to bleaching, algal colonization was observed, reducing light to the phycobiont impairing C assimilation (James, 1973; Hauck, 2010).

S. capillifolium prefers acid bogs (Brown & Bates, 1990), where the NH$_4^+$ which dominates pore water (Hemond, 1983) can be used more effectively than NO$_3^-$ for growth (Touffet, 1971). Both N forms, above 24 kg N ha$^{-1}$ yr$^{-1}$, decreased S. capillifolium cover, and were associated with significant increases in amino acids in 2006 (I. de Lange, unpublished data), indicating excess NH$_4^+$ and thus diversion of C away from growth (Ohlsen et al., 1995; Nordin & Gunnarsson, 2000). Twenhöven (1992) also reported that low NH$_4^+$ concentrations stimulated S. fallax growth, whereas NO$_3^-$ decreased the abundance of both S. fallax and S. magellanicum. Nox56 may also have compromised the acid base balance, increasing S. capillifolium capitulum pH by 0.5 units (4.57 control, 5.04 Nox56, 4.51 Nred56) (Kivimaki, 2011; Manninen et al., 2011). Not all negative effects of Nox on S. capillifolium were direct: stimulation of H. jutlandicum cover (+50%) caused some S. capillifolium to be overgrown and shaded. For this peatland community, the increase in plant pH associated with Nox appears to be quite deleterious. In 2011, the negative effect of Nox on S. capillifolium was almost significant ($P = 0.096$) corresponding to a medium size effect (-0.4 compared with -0.62 for Nred).
N form and CLN setting

Nitrophobic nonvascular plants were most sensitive to Nred. However, 9 years of increasing N deposition, as NH₄⁺ or NO₃⁻, to the canopy of this acid peatland vegetation caused few significant changes in species cover over and above the evolving changes in control plots. Calluna and S. capillifolium preferred Nred and H. jutlandicum Nox, but other species were insensitive to N form. Thus, the main components of this single ecosystem differed in their responses to N form however, CLN's are applied at the ecosystem level, making it difficult to apply form based CLN's.

Knowledge of potential eutrophication responses of species growing at a given site to either Nox or Nred could indicate an additional risk from N deposition reflecting the dominant N form. N form could thus be used as a moderator for establishing which end of the CLN range is appropriate for a site. It would be prudent to set the CLN at the low end of the published range of N deposition when a site contains sensitive nonvascular plants, the input is predominantly in the damaging form, or where ecosystems contain vascular plants with nitrophilic characteristics and Nox dominates deposition.

A further aspect of the N form CL debate, not to be overlooked, concerns the interaction between N form and soil chemistry. Post deposition, these N forms are interchangeable, both in the plant and in the soil through enzyme-mediated conversions that depend heavily on pH (Stevens et al., 2011). The significance of these transformations will depend on the ecosystem and the ratio of reduced to oxidized N in precipitation but requires further evaluation (Stevens et al., 2011).

Other drivers influence species cover

Species cover in the control plots did not remain static, implying other factors e.g. the environment or just the age dynamics and competitive balance, homeostasis, within the community are actively shaping vegetation cover at Whim, unmanaged for at least 70 years. However, quantifying the extent to which these factors have exacerbated or suppressed treatment responses is confounded, because N supply is coupled to rainfall.

In 2009, the cover of most species irrespective of treatment dipped, coinciding with 25% higher rainfall the preceding year. The higher rainfall may have reduced CO₂ diffusion, and PAR was ca. 15% lower than in other years. By 2011, cover had recovered. In 2003, Whim bog, like most in Europe (Gerdol et al., 2008), experienced an exceptional, prolonged drought, which caused short-lived adverse effects in S. capillifolium (Carfrae et al., 2007), reversed by the following wet autumn/winter, and undetectable in 2004 cover. P. schreberi too appears to prefer damp conditions judging from 2004 cover values, post 2003 drought, which were lower than expected, but recovered as rainfall increased through the course of the study. Climatic driven changes appear to be more transient, than those associated with N deposition.

Conservation Implications: indicator species

Pleurozium schreberi and C. portentosa appear to be strongly nitrophobic and unlikely to be present, or of very limited occurrence, at sites where ambient inputs exceed 24 kg N ha⁻¹ yr⁻¹. Thus, their absence from environmentally suitable sites could indicate high N deposition levels, although, water table height also determines species presence and absence in peatlands (Lindsay, 2010). Such environmental factors will also need to be accommodated within N deposition indicators. Non-responding species, tolerant of or indifferent to wet N deposition and its effects without long-term or significant cover changes were also identified. Some ericoids fell into this category e.g. E. tetralix, V. oxyccoccus and E. nigrum. None of the species in the wet deposition plots, from either the graminoids or ericoids can be described as true nitrophiles. However, we saw (Sheppard et al., 2011) that once competition from Calluna was removed E. vaginatum displayed its nitrophilic characteristics (Redbo-Torstensson, 1994; Wiedermann et al., 2007). Many grasses, even though they have low Ellenberg values, behave as nitrophiles and up regulate their growth capability in eutrophicated environments at the expense of small forbs with similar Ellenberg values e.g. Molinia caerulea (L.J.L. van den Berg, unpublished data). Molinia caerulea readily capitalizes on increased NH₄⁺ e.g. the Netherlands during the 1990s, where it replaced E. tetralix, transforming wet Ericion tetralicis heathland into grassland (Bobbink et al., 1998; Aerts & Bobbink, 1999). However, though present nearby, M. caerulea has not moved into plots at Whim. Although graminoids exist naturally as low N index plants, a significant cover of such species should be seen as cause for concern given their capacity to respond to N eutrophication.

Nine years of wet N deposition below 24 kg N ha⁻¹ yr⁻¹ have caused few significant changes in species cover and even twice this dose has not thus far destabilized the community. By contrast, N deposition as dry deposited ammonia has been devastating for this bog (Sheppard et al., 2011). These results suggest that dry deposited NH₃ dominates changes driven by N deposition.

RESILIENCE OF BOG VEGETATION TO WET N INPUTS

Acknowledgements
Funding sources include NERC, CEH, Defra (Terrestrial Umbrella CPEA 18) and the EU projects NitroEurope IP and ÉCLAIRE. William Sinclair Horticulture Ltd is acknowledged for site access. Anni Vuohelainen and Monique van Geemen helped with growth and pH measurements. CF’s PhD was funded jointly by CEH and MMU and VDB was funded through NERC N/E/00413.

References
Bobbink R, Hettingh J-P (eds) (2011). Review and revision of empirical critical loads for site access. Anni Vuohelainen and Monique van Geemen helped with growth and pH measurements. CF’s PhD was funded jointly by CEH and MMU and VDB was funded through NERC N/E/00413.
Manninen S, Woods C, Leith ID, Sheppard LJ (2011) Physiological and morphological effects of long-term ammonium or nitrate deposition on the green and red (Clad)
Supporting Information

Table S1. Soil and meteorological characteristics at Whim.
Table S2. Mean climatic variables at Whim.
Table S3. Effects of wet nitrogen deposition on growth and vitality responses.
Table S4. Summary of responses of common plant species growing on Whim bog to wet N deposition, and the year of response, ns = P > 0.05, *=P < 0.05, where Nox, nitrate and Nred, ammonium.
Table S5. Model parameters derived from the Huisman, Olff and Fresco (HOF) curve fitting procedure using the R package ‘gravy’. The parameters a-d of these models were explained under the section data analysis.
Table S6. Descriptive statistics of the path model parameters (see data analysis), based on summarizing 20000 values from the posterior distributions of each.

Figure S1. Per cent cover responses of key species in permanent quadrats since 2002 (pretreatment) up to 2011, growing on Whim bog and treated with wet deposited nitrate (NaNO₃) or ammonium (NH₄Cl) at 8, 24 or 56 kg N ha⁻¹ yr⁻¹ or wet only (control) = Nox8, Nox24, Nox56 or Nred8, Nred24 or Nred56 respectively. (Cv gr, Calluna green shoots; Cv dea, Calluna dead brown shoots; Cv lit, Calluna litter; En, Empetrum nigrum; Vo, Vaccinium oxycoccus; Et, Erica tetralix; Vm, V. myrtillus; Sc, Sphagnum capillifolium; Hj, Hypnum jutlandicum; Ps, Pleurozium schreberi; Ev, Eriophorum vaginatum; Cp, Cladonia portentosa). Linear or polynomial (unimodal) trend lines describe the response.

Figure S2. Difference in mean cover, +/- standard error, from mean plot quadrats pretreatment cover (2002), after 2 year (2004), 5 year (2007), 7 year (2009), 9 year (2011) of Calluna, Erica tetralix, Eriophorum vaginatum, Sphagnum capillifolium, Hypnum jutlandicum, Pleurozium schreberi and Cladonia portentosa in response to wet deposited oxidized N, nitrate (NaNO₃) or reduced N, ammonium (NH₄Cl) at 8, 24 or 56 kg N ha⁻¹ yr⁻¹ or wet only (control) = Nox8, Nox24, Nox56 or Nred8, Nred24 or Nred56 respectively.

Figure S3. Difference in cover from the start (2002) for the most common species growing on Whim bog receiving oxidized N (Nox) or reduced N (Nred) plotted against each other. The closer points are to the 1:1 solid line the more similar the response to reduced and oxidized N.